
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3086

Testability Estimation of Object Oriented Design:

A Revisit

Abdullah
1
, Dr. Reena Srivastava

2
, Dr. M.H. Khan

3

Research Scholar, School of Computer Application, BBDU, Lucknow, India
 1

Dean, School of Computer Application, BBDU, Lucknow, India
 2

Associate Professor, Department of C.S. E., I.E.T., Lucknow, India
 3

Abstract: Testability is one of the most important quality indicators. Its correct measurement or evaluation, always

facilitate and improve the test process. However, testability has always been an elusive concept and its correct measurement

or evaluation is a difficult exercise. Researchers and practitioners have always argued that testability should be considered

as a key attribute in order to guarantee the software quality. An accurate measure of software quality depends on testability

measurement, and as a result estimating efforts in measuring testability is a complex problem attracting considerable

research attention.

 This paper presents the results of a systematic review conducted to collect evidence on software testability estimation of

object oriented design. In this review paper, our aim is to find the existing known comprehensive and complete model or

framework for evaluating the testability of object oriented design at an initial stage.

Keywords: Software Testability, Testability Estimation, Object Oriented Design, Software Quality, Software testing.

I. INTRODUCTION

Software development processes mainly focus on

minimizing errors, detecting and correcting software faults

that do occur, and help to deliver high quality software after

development. It is well understood that delivering quality

software is no longer an advantage but is a necessary factor.

Unfortunately, most of the industries not only fail to deliver

a quality product to their customers, but also do not

understand the relevant quality attributes [1]. Software

testing is an important discipline of software engineering,

and consumes significant amount of time and effort. An

appropriate approach is required to perform testing

activities properly and effectively. Software testability

always supports the testing process and facilitates the

creation of better quality software within time and budget.

 Effective testability planning, early in the software

development process may greatly contribute to the delivery

of high quality software products; more satisfied and happy

users, highly reduced overall maintenance cost and rework,

and more accurate and reliable results. However, ineffective

testability planning or testability planning at later stage of

development process will lead to the opposite results; lower

quality products, unsatisfied users, increased maintenance

cost, unreliable and inaccurate results. Software testing,

which can expose software faults during development, is an

important means for software quality assurance. With the

enlargement of software scale and complexity, testing

problems have become more prominent. For example,

money needed in testing is regularly increasing, and more

and more tests are difficult to carry out. A major means to

solve these problems is by improving the software

testability. Software testability estimation can help

developing a more reliable software by more thoroughly

understanding the software testability [13].

 Testability is a quality factor; its measurement or

evaluation can be used to predict the amount of effort

required for testing and help in allocating required resources.

There is no clear definition to „what aspects of software are

actually related to testability‟ [17]. However, testability has

always been an elusive concept and its correct measurement

or evaluation is a difficult exercise. Most of the studies

measure testability or precisely the attributes that have

impact on testability at the source code level. It has been

inferred from the literature survey on testability analysis that

there is a heavy need of identifying a commonly accepted set

of the factors affecting software testability [18]. Estimating

testability at a later stage leads to the late arrival of desired

information, leading to late decisions about changes in

design. This simply increases cost and rework. Therefore,

early estimation of testability in the development process

may greatly enhance software quality and reduce testing

efforts and costs. Hence measuring software testability at an

early stage of development life cycle may reduce the overall

cost, cycle time and rework.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3087

II. SOFTWARE TESTABILITY

An accurate measure of software quality depends on

testability measurement [17]. Testability is a non-functional

requirement important to the testing team members and the

users who are involved in user acceptance testing. Non

functional requirements are mostly quality requirements and

make the customer happy and satisfied. Software testability

is one of the important concepts in design, and testing of

software program and components. Building programs and

components with high level testability always simplifies test

process, reduces total test cost, and increases software

quality. Software testability analysis may be useful to

examine, and estimate the quality of software. Testability is

important for both ad-hoc developers, and organizations

with a high-level of process maturity. It reduces cost in a

reliability-driven process, and increases reliability in

resource-limited processes. It refers to „the inherent ability,

or extent of ease with which software undergoes through

testing [27]. Any tool or technique that help to improve

object oriented design at an initial stage of software

development life cycle can have highly appreciable impact

on the final testing cost and quality.

Testability has always been an elusive concept and its

correct measurement or evaluation is a difficult exercise

because various potential factors have affect on software

testability measurement. Testability is one of the most

important quality indicators. Its measurement leads to the

prospects of facilitating and improving a test process.

Several approaches, prominently including the Program-

based Testability Measurement, Model-based Testability

Measurement, and Dependability-based Testability

Assessment have been proposed [15]. How efficiently the

faults will be uncovered depends upon the testability of the

software [16]. Most of the studies measure testability or

more precisely the attributes that have impact on testability

but at the source code level. However, testability estimation

at the source code level is a good indicator of effort

estimation; it leads to the late arrival of information in the

development process. Estimating testability at later stage of

development process after coding has been started may be

very expensive and error-prone. But if testability is

evaluated earlier in the development process, before coding

starts, it may greatly reduce the overall cost, time and

rework. As a result it can accelerate the software

development process.

III. TESTABILITY ESTIMATION OF OBJECT ORIENTED

DESIGN

Object oriented technology have become the most popular

and familiar concept in software industry. Object oriented

concept is now widely used by software industry. Despite

the fact that technology is not mature enough from testing

point of view [17], almost everyone talk about it, almost

everyone claim to be doing it and almost everyone says that

it is better than traditional function oriented design. Because

most of the focus of the object oriented approach to software

development has been on analysis and design phase, only a

few research studies have been devoted to explore the

concept of testability in object oriented system.

Practitioners frequently advocate that testability should be

planned early in the design phase. So it is necessary to

identify object oriented design artifacts to quantify testability

measures. During identification of design factors which have

positive impact on testability estimation, a pragmatic view

should be considered. If we consider all factors and

measures then they become more complicated, ineffective or

time consuming. Therefore, there is a need to identify factors

and measures which affect the activity positively and

directly. In order to estimating testability, its direct measures

are to be identified. Design level factors like abstraction,

encapsulation, inheritance, cohesion, coupling etc. will also

be investigated keeping in view their impact on overall

testability. This process identified object oriented design

constructs that are used during design phase of development

life cycle and serve to define a variety of testability factors.

The contribution of each object oriented design

characteristics is analyzed for improvement in design

testability.

IV. LITERATURE REVIEW

Testability is an elusive concept. It is very difficult to get a

clear view on all the potential factors that can affect software

testability. The research on software testability first appeared

in 1975. It is adopted in McCall and Boehm software quality

model, which build the foundation of ISO 9126 quality

model. Since 1990s, software engineering community began

to launch quantitative research on testability. Software

testability analysis has been an important research direction

since 1990s and became more pervasive in 21st century [1].

 A number of researchers addressed software testability,

but in the context of conventional structured design. The

question of testability has been revived with the object-

orientation [2, 3, 4]. Despite the fact that object oriented

technology has now been widely accepted by the software

industry, only a few research studies have been devoted to

explore the concepts of testability in object oriented systems.

Several developments on the measurement of testability and

design for testability have been reported in the literature [9,

10, 16, 17, and 18]. Unfortunately, these achievements have

not been widely accepted and hence, not been adopted in

practice by industry [1, 5]. Following sections systematically

summarize some of the relevant important efforts made by

researchers in this area.

 In 1993, Voas and Miller [6] highlight software testability

metric that are depends upon inputs and outputs artifacts of

a software module. To measure testability, they proposed

PIE (propagation, infection and execution) analysis

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3088

technique [2]; but measuring testability through the PIE

analysis technique was very complex and have high

complexity. Due to these limitations this technique is not

adopted by industry personals.

 In 1994, Binder had done a great work showing the

importance for improving software testability in system

development life cycle [4]. He proposed a fishbone model

representing the key factors of testability. Fishbone model

broadly include, software testability is a result of six factors:

(1) Characteristics of the representation (2) Characteristics

of the implementation (3) Built-in test capabilities (4) The

test suite (test cases and associated information) (5) The test

support environment (6) The software process in which

testing is conducted. But unfortunately all above testability

factors measure only higher level of abstraction. Which

result has no any clear relationship with object oriented

design constructs and implementation.

 In 1998, Bruce and Haifeng Shi [7] highlighted the object

oriented design testability factors that affect testability, and

showing their impact for improving software testability of

object oriented design. They designed a model for testability

measurement with the help of single testability factor and

design level constructs. But this framework has various

limitations from implementation point of view.

 In 2002, Jungmayr [8] showing a new concept for

estimating software testability through integration testing

and emphasized only these component. He identified local

dependencies that positively contributing and responsible for

overall testability. Jungmayr‟s concept used reduction metric

to calculate the effect of individual factors in software

testability to find out required testability metric.

 In 2004, Bruntink and van Deursen [9] presents a group of

metrics for exploring the testability of object oriented Java

system, and identified testability factors through source code

metrics. In order to improve testability, a decision to change

the design after coding was started it very expensive and

error prone.

 In 2005, Baudry et al. highlighted the importance of

individual types of class coupling on testability metrics. And

establish a relation of coupling and class interaction metrics

that finalize testability [11]. However, this hypothesis was

not empirically validated.

 In 2005, for measuring testability, Jerry and Ming

presented a model that is based on pentagon shaped and

analytical approach [10].

 In 2007, Mulo integrate the importance of testability

measurement throughout the software development life

cycle [12]. Estimating testability during the entire

development life cycle is very expensive and error prone.

 In 2009, Jianping Fu & Minyan Lu, proposed a request-

oriented method of software testability measurement [19].

The method can select suitable elements from a self-

contained software testability measurement framework

according to the different measurement requests to complete

all kinds of software testability measurement. Unfortunately,

these achievements have not been widely accepted and

hence, has not been adopted in practice by the industry.

 In 2011, Fadel Toure [20] presented a novel approach for

improving testability of the software using software

reliability growth models. However, the different approaches

discussed for improving and measuring testability were

theoretical and the quantitative measure of improvement of

testability was not given.

 In 2012, Badri, Mourad, and Fadel Toure, focused on

establishing the relationship between object oriented metrics

and testability of classes in terms of required testing effort

[21]. For this they performed an empirical analysis using

data collected from three Java software systems for which

JUnit test cases exist. To capture testability of classes, they

used different metrics to quantify the corresponding JUnit

test cases. The metrics related to the JUnit test cases were

used, in fact, to classify the classes in two categories in

terms of required testing effort: high and low. In this work,

testability has been investigated from the perspective of unit

testing.

 In 2013, Pizzi, Nick J. [22] proposed fuzzy classification

approach. In this approach a large collection of classifiers is

available with subsets of the software metric features.

Subsets are selected stochastically using a fuzzy logic based

sampling method. The classifiers then predict the quality,

specifically the class label, of each software object. Fuzzy

integration is applied to the results from the most accurate

individual classifiers. These classifiers estimate the quality

especially at the class level, which lead to no clear

relationship with the software metric features that are based

on design artifacts and the implementation level.

 In 2013, Tiwari, Rajeev and Noopur Goel [23] proposed

reuse-oriented test approaches, which are used to reduce the

testing effort. Further, he stated the state-of-the-art in reuse-

oriented test approaches employed in reuse oriented

development processes. But this approach is not widely

acceptable for new products. The reuse-oriented approach is

not always practical in its pure form because a full repertoire

of reusable components may not be available

 In 2013, Panigrahi, Chhabi Rani, and Rajib Mall [24]

proposed a regression test case prioritization technique for

object-oriented programs. They construct an intermediate

graph model of a program from its source code. When the

program is revised, the model is updated to reflect the

changes. The constructed model shows control and data

dependencies, and information pertaining to various types of

dependencies arising from object-relations such as

association, inheritance and aggregation. Regression test has

been investigated from the perspective of source code. It

ensures that old code still works when the new code changes

are done. This is practically very expensive, wasteful of

resources, and requires unduly long times.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3089

 In 2013, Amid, Amin, and Somaye Moradi [25] proposed a

model in order to measure the quality of Software. In this

model an effort has been put to increase software

productions quality, the process of software production has

been determined, using CMM standard framework of

maturity level. But in CMM it does not present a method for

measurement and evaluation maturity level. They proposed a

hybrid model of CMM and COBIT by considering the

factors affect on software quality. The factors that influence

the software quality include customer view and project

management view. However, the hypothesis was not

empirically validated and not adopted by industry. In 2013,

Kaur, Kiranjit, and Sami Anand [26] proposed a multivariate

linear model, which estimates the maintainability of a class

diagram. He mainly focused only on maintainability

estimation in terms of testability, reliability, portability.

These metrics help a software designer for improving the

maintainability of a class diagram in the design phase. After

a revision tour we found that various methods or techniques

are available in the literature for estimating software

testability. A survey of the testability estimation of object

oriented design shows that maximum effort focus at the later

stage of software development life cycle. On the other hand,

recent developments in software configuration management

frequently advocate integrating software testability in design

phase which in turn will help the designer to improve quality

of software and security and greatly reduce the overall cost

and rework.

V. CRITICAL OBSERVATIONS

After successful completion of the literature survey some

important observations can be enumerated as follows.

 If we estimate the software testability at an initial

stage that is design phase in the software development

process may greatly improve the software quality and as

well as client satisfaction, and reduce overall cost, time and

effort of rework.

 In order to reducing effort in measuring testability

of object oriented design we need to identify a minimal set

of testability factors for object oriented development

process, which have positive impact on testability

measurement.

 Object oriented software characteristics must be

identified and then the set of testability factors relevant at

the design phase should be finalized.

 Further, testability metrics must be selected at the

design phase because metric selection is an important step in

testability estimation of objects oriented design.

VI. CONCLUSION

Several approaches have been proposed in the literature for

measuring software testability. A survey of the relevant

literature shows that maximum efforts have been put at the

later stage of software development life cycle. A decision to

change the design in order to improve testability after coding

has started, but is very expensive and error-prone. Therefore,

it is an obvious fact that estimating testability early in the

development process may greatly reduce testing time, effort,

rework and cost. The early estimation of testability at design

phase can yield the highest payoffs. On the other hand, the

lack of testability at early stage may not be compensated

during subsequent development life cycle.

After the above discussion our conclusion is that testability

is a quality factor that attempts to predict that how much

effort will be required for software testing. After an

exhaustive review process we found that reducing effort in

measuring testability of object oriented design is must in

order to deliver quality software within time and budget.

REFERENCES

[1] L. Zhao, “A new approach for software testability analysis”,

International Conference on Software Engineering, Proceeding of the 28th
international conference on Software Engineering, Shanghai, pp. 985–988, 2006.

[2] Voas and Miller, "Software Testability: The New Verification". IEEE

Software. Vol. 12(3), p. 17-28, 1995.
[3] J.M. Voas. "Object-Oriented Software Testability". In proceedings of

International Conference on Achieving Quality in Software, January 1996

[4] R.V. Binder, "Design for testability in object-oriented systems”.
Communications of the ACM. Vol. 37(9), p. 87-101, 1994.

[5] M. Nazir, Khan R A & Mustafa K. (2010): Testability Estimation

Framework, International Journal of Computer Application, Vol. 2, No. 5,
pp.9-14. June 2010

[6] Voas and Miller, Semantic metrics for software testability, Journal of

Systems and Software, Vol. 20 (3), pp. 207-216, 1993.

[7] Bruce W.N.Lo and Haifeng Shi, A preliminary testability model for

object-oriented software, in Proc. International Conf. on Software

Engineering, Education, Practice, Pages 330{337. IEEE. 1998.
[8] Jungmayr, S. Testability Measurement and Software Dependencies. In

Proceedings of the 12th International Workshop on Software Measurement,

pp. 179–202, October 2002.
[9] M. Bruntink and A. V. Deursen, Predicting class testability using object-

oriented metrics, in Proc. IEEE international Workshop on Source Code

Analysis and Manipulation, pp. 136-145, 2004.
[10] J. Gao and Ming-Chih Shih, component testability model for

verification and measurement, In Proc. of the 29th Annual International
Computer Software and Applications Conference, pages 211–218. IEEE

Comp Society 2005.

[11] Baudry and Traon, Measuring Design Testability of a UML Class
Diagram. Information and Software Technology, 47(13):859–879, 2005.

[12] E. Mulo, “Design for Testability in Software Systems”, Master‟s

Thesis, 2007.
URL:swerl.tudelft.nl/twiki/pub/Main/ResearchAssignment/RA-Emmanuel-

Mulo.pdf

[13] Jianping, Fu, Liu Bin, and Lu Minyan."Present and future of software
testability analysis." Computer Application and System Modelling

(ICCASM), 2010 International Conference on. Vol. 15. IEEE, 2010.

[14] D. Esposito, “Design Your Classes for Testability”, 2008.
http://dotnetslackers.com/articles/n net/Design-Your-Classes-for-

Testability.aspx

[15] Cinnéide, M.O. Boyle, D.; Moghadam, I.H.,” Automated Refactoring
for Testability “, Software Testing, Verification and Validation Workshops

(ICSTW), Page(s): 437 – 443, IEEE Fourth International Conference

Ireland, March 2011.
[16] Improving the Testability of Object-oriented Software during Testing

and Debugging Processes, Sujata Khatri, R.S. Chhillar, V.B.Singh,

International Journal of Computer Applications (0975 – 8887) Volume 35–
No.11, December 2011.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3090

[17] Nazir, Mohd, and Raees A. Khan. "Testability Estimation Model

(TEMOOD)." Advances in Computer Science and Information Technology.
Computer Science and Information Technology. Springer Berlin

Heidelberg. 178-187, 2012.

[18] Nazir M., Khan Raees. A.,” An Empirical Validation of
Understandability Quantification Model”, Journal Procedia Technology,

2nd International Conference on Computer, Communication, Control and

Information Technology, Volume 4, Pages 772–777, 2012.
[19] Fu, Jianping, and Minyan Lu. "Request-Oriented Method of Software

Testability Measurement." Information Technology and Computer Science,.

ITCS 2009. International Conference on. Vol. 2. IEEE, 2009.
[20] Improving the Testability of Object-oriented Software during Testing

and Debugging Processes, Sujata Khatri, R.S. Chhillar, V.B.Singh,

International Journal of Computer Applications (0975 – 8887) Volume 35–
No.11, December 2011.

[21]Badri, Mourad, and Fadel Toure. "Empirical Analysis of Object-

Oriented Design Metrics for Predicting Unit Testing Effort of Classes."
Journal of Software Engineering and Applications 5.7: 513-526, 2012.

[22] Pizzi, Nick J. "A Fuzzy Classifier Approach to Estimating Software
Quality." Information Sciences (2013). Volume 241, Pages 1–11, 20 August 2013.

[23]Tiwari, Rajeev, and Noopur Goel. "Reuse: reducing test effort." ACM

SIGSOFT Software Engineering Notes 38, no. 2: 1-11, 2013.
[24] Panigrahi, Chhabi Rani, and Rajib Mall. "An approach to prioritize the

regression test cases of object-oriented programs." CSI Transactions on

ICT: 1-15, 2013.
[25] Amid, Amin, and Somaye Moradi. "A Hybrid Evaluation Framework

of CMM and COBIT for Improving the Software Development Quality." 2013.

[26] Kaur, Kiranjit, and Sami Anand. "A Maintainability Estimation Model
and Metrics for Object-Oriented Design (MOOD)." International Journal of

Advanced Research in Computer Engineering & Technology (IJARCET)

2.5: pp-1841, 2013.
[27]http://developeriq.in/articles/2008/jan/12/software testability

BIOGRAPHY

Abdullah received the MCA degree from

Uttar Pradesh Technical University,

Lucknow, in 2006. He is currently

working as an Assistant Professor, in the

Department of Computer Application, at

Institute of Environment and

Management, Lucknow. His research

interests Include Software testability, Software Quality

Estimation. He has written various books and study

materials for North Orissa University, Suresh Gyan Vihar

University, Jaipur, Rajasthan.

Dr.Reena Srivastava is currently

working as Dean, School of Computer

Applications at BBD University. She

received her Ph.D degree from MNNIT

Allahabad, India. Her research area

includes Multi-Relational Classification,

Privacy Preserving Data Mining and Software Engineering.

 Dr. M. H. Khan, Associate Professor,

Department of Computer Science and

Engineering at IET Lucknow UP.

Obtained his MCA degree from Aligarh

Muslim University (Central University)

in 1991 .Later he did his PhD from

Lucknow University. He has around 24 years rich teaching

experience at UG and PG level. His area of research is

Software Engineering. Dr. Khan published numerous

articles, several papers in the National and International

Journals and conference proceedings.

http://www.sciencedirect.com/science/journal/00200255/241/supp/C

